

Environmental Noise Feasibility Study Proposed 1157-1171 North Shore Blvd East Development Burlington, Ontario

Novus Reference No. 18-0085 Final (v2.2) August 13, 2019

NOVUS PROJECT TEAM:

Specialist: Aaron Haniff, P.Eng. Principal: Marcus Li, P.Eng.

This page intentionally left blank for 2-sided printing purposes

Table of Contents

1.0 INTR	ODUCTION	1
1.1 N	ature of the Subject Lands	1
1.2 N	ature of the Surroundings	1
PART 1: IM	IPACTS OF THE ENVIRONMENT ON THE DEVELOPMENT	2
	sportation Noise Impacts	
	ransportation Noise Sources	
	urface Transportation Noise Criteria	
	2.2.1 Ministry of the Environment Publication NPC-300	3
2.3 T	raffic Data	
2.4 P	rojected Sound Levels	7
	acade Requirements	
	outdoor Living Areas	
	2.6.1 MECP NPC-300 Criteria	
	2.6.2 City of Burlington Criteria	
	2.7.1 Residential Units	
	2.7.2 Outdoor Amenity Area	
PART 2: IM	IPACTS OF THE DEVELOPMENT ON ITSELF	
3.0 Noise	e Impacts Proposed Development Stationary Sources	12
	IPACTS OF THE DEVELOPMENT ON THE SURROUNDING	
4.0 Propo	osed Development Mechanical Equipment	13
5.0 CON	CLUSIONS AND RECOMMENDATIONS	14
5.1 T	ransportation Noise	14
5.2 N	oise Impacts From Proposed Development on Itself	14
5.3 N	oise Impacts From Proposed Development on the Surroundings	15
6.0 REFI	ERENCES	15
List of Ta	bles	
Table 1:	MECP Publication NPC-300 Sound Level Criteria for Road and Rail Noise	4
Table 2:	MECP Publication NPC-300 Outdoor Living Area Mitigation Requirements	4
Table 3:	MECP Publication NPC-300 Ventilation & Warning Clause Requirements	5
Table 4:	MECP Publication NPC-300 Building Component Requirements	6
Table 5:	Summary of Road Traffic Data Used in the Transportation Noise Analysis	6
Table 6:	Summary of Predicted Roadway Noise Impacts – Façades	7
Table 7:	Summary of Façade STC Requirements	9
Table 8:	Summary of Predicted Roadway Noise Impacts – OLA	10
Table 9:	Predicted OLA Sound Level as Height of Noise Wall Increases	10

List of Figures

Figure 1: Site Plan

Figure 2: Site and Surrounding Area

Figure 3: Façade Sound Levels – Road Impacts, Daytime Figure 4: Façade Sound Levels – Road Impacts, Night-time

Figure 5: Outdoor Living Area – Road Impacts

Figure 6: Potential Barrier Locations

List of Appendices

Appendix A: Development Drawings

Appendix B: Roadway Traffic Data, Traffic and Façade Calculations

Appendix C: Required Warning Clauses

1.0 INTRODUCTION

Novus Environmental Inc. (Novus) was retained by Amico Properties (Amico) to conduct a noise assessment for the proposed seniors living centre re-development at 1157-1171 North Shore Boulevard East in Burlington, Ontario. This assessment is in support of the Official Plan Amendment and Zoning By-law Amendment (OPA/ZBA) application.

The Region's Noise Abatement Guidelines (NAG) were developed to provide an overview of the approved policy and outlines implementation processes for Existing Residential Development, Regional Capital Road projects and New Developments. The applicable portion of the NAG for this assessment is Section 4.0 – New Development.

In general terms, the NAG requires noise to be addressed from traffic, industry, commercial plazas, and any other noise sources which exceed the Ministry of the Environment, Conversation and Parks (MECP, formerly MOECC) guidelines. These sources are required to be addressed for noise sensitive land uses, such as residential buildings (e.g. single family homes, apartments and condominiums), and institutional buildings (e.g. hospitals, old age homes, etc.). In addition, the City of Burlington has provided guidance for applications which has been included in this report.

Nature of the Subject Lands 1.1

The proposed development is to be located at 1157-1171 NorthShore Boulevard in Burlington, Ontario. The site is at the northeast corner of Northshore Boulevard and the Queen Elizabeth Highway (QEW). The site is currently occupied by a co-operative building, which is intended to be demolished through the development. The site is approximately 4.47 acres in size.

The proposed development would include the demolition of all existing buildings on the site (two four-storey residential buildings and a single-storey garage) and the redevelopment of the site for seniors living. The proposed development will consist of a tall point tower, mid-rise building and podiums levels. The heights of the various built form elements as proposed range between a single and 18 storeys (including penthouse). Copies of the proposed development can be found in Appendix A.

The site plan of the proposed development is provided in **Figure 1**.

1.2 **Nature of the Surroundings**

Immediately surrounding the site is the QEW to the south through west, low-rise residential buildings to the northwest and north, with mid-rise residential buildings to the northeast and east. To the southeast is a low-rise commercial building on the opposite side of North Shore Boulevard. Beyond the immediate surroundings there is low-rise residential buildings to the south through west to north; mid-rise residential buildings to the northeast, along North Shore Boulevard East; and low-rise institutional (Joseph Brant Hospital) and residential buildings (Chartlwell Brant Centre LTC Residence) to the east and southeast. Lake Ontario is 400m to

the east and Hamilton Harbour is 500m southwest. The Skyway Wastewater Treatment Plant is also located to the southeast.

The topography immediately surrounding the proposed development has substantial elevation changes that have been incorporated into the assessment. **Figure 2** shows the site and surrounding area.

PART 1: IMPACTS OF THE ENVIRONMENT ON THE DEVELOPMENT

In assessing potential impacts of the environment on the proposed development, the focus of this report is to assess the potential for transportation noise impacts from nearby roadways (predominantly from the QEW).

The area surrounding the proposed development site is mainly residential, however, there are a few commercial/institutional properties along North Shore Boulevard East and industries along the water.

The Chartwell Brant Centre LTC Residence is required by the City of Burlington Noise By-law to meet the MECP NPC noise guideline limits at the adjacent high-rise residential building to the east of the development. This building is the Lakewinds Condo (1201 North Shore Boulevard), located directly opposite the Chartwell Brant Centre LTC Residence. Therefore, the Chartwell Brant Centre LTC Residence noise is not expected to impact the proposed development, and a detailed assessment of impacts is not required.

Both the Joseph Brant Hospital and Burlington Cultural Centre have existing Environmental Compliance Approvals with requirements to meet the MECP noise guidelines. Therefore, the noise guideline limits are expected be met at closer intervening noise sensitive buildings and would not impact the proposed development. A detailed assessment of impacts is not required for these facilities.

The Skyway Wastewater Treatment Plant also has an existing Environmental Compliance Approval, with requirements to meet the MECP NPC noise guideline requirements, and a Noise Abatement Action Plan (NAAP) in place for the facility. Therefore, the Skyway Wastewater Treatment plant is expected to meet the MECP NPC-300 noise guideline limits at all surrounding noise sensitive land uses surrounding this facility. This includes the Chartwell Brant Centre LTC facility, which is located between the proposed development and the Skyway Wastewater Treatment plant. Therefore, noise impacts from the Skyway Wastewater Treatment Plant would not impact the proposed development, and a detailed assessment of impacts is not required.

2.0 Transportation Noise Impacts

2.1 **Transportation Noise Sources**

Transportation noise sources of interest with the potential to produce noise at the proposed development are the QEW, North Shore Boulevard East and associated ramps. Sound exposure levels at the development have been predicted, and this information has been used to identify façade, ventilation and warning clause requirements.

No impacts are anticipated at the project site from airports or rail traffic due to the large separation distance between the project and any surrounding rail lines or airports. As a result, these two types of transportation sources are not discussed any further in this report.

There are no significant sources of vibration in the area that are anticipated to affect the project. As a result, vibration is not discussed further in this report.

2.2 **Surface Transportation Noise Criteria**

The NAG requires noise to be addressed from traffic and other sources that exceed the MECP guideline limits. The most applicable MECP guideline for transportation noise levels is Publication NPC-300.

2.2.1 Ministry of the Environment Publication NPC-300

Noise Sensitive Developments

MECP Publication NPC-300 provides sound level criteria for noise sensitive developments. The applicable portions of NPC-300 are Part C – Land Use Planning and the associated definitions outlined in Part A – Background. Table 1 to Table 4 below summarizes the applicable surface transportation (road and rail) criteria limits.

Location Specific Criteria

Table 1 summarizes criteria in terms of energy equivalent sound exposure (Leq) levels for specific noise-sensitive locations. Both outdoor and indoor locations are identified, with the focus of outdoor areas being amenity spaces. Indoor criteria vary with sensitivity of the space. As a result, sleep areas have more stringent criteria than Living / Dining room space.

Table 1: MECP Publication NPC-300 Sound Level Criteria for Road and Rail Noise

Type of Space	Time Period	Assessment Location		
		Road	Rail ^[1]	
Outdoor Living Area (OLA)	Daytime (0700-2300h)	55	55	Outdoors ^[2]
Living / Dining Dann [3]	Daytime (0700-2300h)	45	40	Indoors ^[4]
Living / Dining Room ^[3]	Night-time (2300-0700h)	45	40	Indoors [4]
Classica Overhan	Daytime (0700-2300h)	45	40	Indoors ^[4]
Sleeping Quarters	Night-time (2300-0700h)	40	35	Indoors [4]

Notes:

- [1] Whistle noise is excluded for OLA noise assessments, and included for Living / Dining Room and Sleeping Quarter assessments.
- [2] Road and Rail noise impacts are to be combined for assessment of OLA impacts.
- [3] Residence area Dens, Hospitals, Nursing Homes, Schools, Daycares are also included. During the night-time period, Schools and Daycares are excluded.
- [4] An assessment of indoor noise levels is required only if the criteria in Table 4 are exceeded.

Outdoor Amenity Areas

Table 2 summarizes the noise mitigation requirements for outdoor amenity areas ("Outdoor Living Areas" or "OLAs"). Even though elevated amenity spaces are excluded from the Halton Region noise guidelines, the City of Burlington has requested them to be included in the report. As a result, all outdoor amenity spaces that qualify under MECP NPC-300 have been assessed in this report.

Table 2: MECP Publication NPC-300 Outdoor Living Area Mitigation Requirements

Time Period	Equivalent Sound Level in Outdoor Living Area (dBA)	Mitigation Requirements and Warning Clauses
	<u><</u> 55	• None
Daytime	55 to 60 incl.	Noise barrier OR
(0700-2300h)	33 to 60 iiici.	Warning Clause A
(5.55 250011)	> 60	 Noise barrier to reduce noise to 55 dBA OR
	> 60	 Noise barrier to reduce noise to 60 dBA and Warning Clause B

For the assessment of outdoor sound levels, the surface transportation noise impact is determined by road traffic sound levels.

Ventilation and Warning Clauses

Table 3 summarizes requirements for ventilation where windows potentially would have to remain closed as a means of noise control. Despite implementation of ventilation measures where required, if sound exposure levels exceed the guideline limits in Table 1, warning clauses advising future occupants of the potential excesses are required.

Warning clauses also apply to the OLA, where an excess of up to 5 dBA over the 55 dBA OLA limit is often acceptable to many, particularly in the context of an urban environment. Warning clauses are discussed further in **Section 2.6**.

MECP Publication NPC-300 Ventilation & Warning Clause Table 3: Requirements

Assessment Location	Time Period	Energy Equivalent Sound Exposure Level - Leq (dBA) Road Rail [1]	Ventilation and Warning Claus Requirements [2]		
Outdoor Living Area	Daytime (0700-2300h)	56 to 60 incl.	Type A Warning Clause		
		≤ 55	None		
Diene	Daytime (0700-2300h)	56 to 65 incl.	Forced Air Heating with provision to add air conditioning + Type C Warning Clause		
Plane of Window	> 65			> 65	Central Air Conditioning + Type D Warning Clause
wiildow	Night-time	51 to 60 incl.	Forced Air Heating with provision to add air conditioning + Type C Warning Clause		
	(2300-0700h)	> 60	Central Air Conditioning + Type D Warning Clause		

Notes:

In addition to the above requirements, the City of Burlington requires that feasibility of reaching 55 dBA be included in the assessment and does not automatically accept the use of a warning clause.

Building Shell Requirements

Table 4 provides sound level thresholds which if exceeded, require the building shell and components (i.e., wall, windows) to be designed and selected accordingly to ensure that the **Table 3** and 4 indoor sound criteria are met.

^[1] Rail whistle noise is excluded.

^[2] Road and Rail noise is combined for determining Ventilation and Warning Clause requirements.

Table 4: MECP Publication NPC-300 Building Component Requirements

Assessment	Time Period	Energy Equivalent Sound Exposure Level - Leq (dBA))		·		Component Requirements
Location		Road	Rail [1]	oomponement in the second of t		
Plane of Window	Daytime (0700-2300h)	> 65	> 60	Designed/ Selected to Meet Indoor		
	Night-time (2300-0700h)	> 60	> 55	Requirements [2]		

Notes:

2.3 Traffic Data

Road traffic data and growth rates were obtained through a combination of City of Burlington and MTO information requests. MTO data from 2006 was used to obtain the QEW commercial traffic percentage. Both the 2006 AADT and truck volume data were used in the estimation. MTO data from 2016 was used to grow the AADT to the 2031 future year used in the analysis. Traffic volumes for both North Shore Blvd. E. and the QEW ramps were provided for the 2016 year and grown to the future 2031 year. Based on the Transportation Impact Study conducted by IBI, a growth rate of 1.1% was used for all roadways that were modelled. Copies of all traffic data used and calculations can be found in **Appendix B**. The following table summarizes the road traffic volumes used in the analysis.

Table 5: Summary of Road Traffic Data Used in the Transportation Noise Analysis

	2031 Traffic	Day/ Night % Split		Commercial Traffic Breakdown		Vehicle
Roadway Link	Levels (AADT)	Daytime	Night-time	% Medium Trucks	% Heavy Trucks	Speed (km/h)
QEW NB	95032	90	10	2.9%	8.8%	100
QEW SB	95032	90	10	2.9%	8.8%	100
North Shore EB to QEW NB Ramp	1093	90	10	1.8%	1.5%	40
North Shore WB to QEW NB Ramp	3681	90	10	1.9%	1.7%	50
QEW NB Offramp to North Shore	9923	90	10	1.4%	1.2%	60
North Shore East of Ramp EB	14371	90	10	1.6%	1.4%	60
North Shore East of Ramp WB	14717	90	10	1.6%	1.4%	60
North Shore West of Ramp EB	7497	90	10	1.9%	1.6%	60
North Shore West of Ramp WB	12991	90	10	1.5%	1.3%	60

^[1] Including whistle noise.

^[2] Building component requirements are assessed separately for Road and Railway noise. The resultant sound isolation parameter is required to be combined to determine and overall acoustic parameter.

2.4 **Projected Sound Levels**

Future (2031) road traffic sound levels at the proposed development were predicted using Cadna/A, a commercially available noise propagation modelling software. Roadways were modelled as line sources of sound, with sound emission rates calculated using ORNAMENT algorithms, the road traffic noise model of the MECP. These predictions were validated and are generally equivalent to those made using the MECP's ORNAMENT or STAMSON v5.04 road traffic noise models.

A validation file (daytime sound levels) is included in **Appendix B**. This file includes 2 locations at the proposed property as follows:

- NR1 is a receptor on the southwest façade of the building, at a height of 2.5 above grade; and
- A 7.5m receptor above grade has been modelled on the southeast façade of the building and labelled NR2.

The validation files do not include the property line berm/barrier/retaining wall, as the effects of this combined with ground topography in Cadna is generally too complex for proper modelling in STAMSON. The general ground level topography has not been included in the STAMSON modelling and is likely the cause for the slightly higher predicted results in STAMSON. Even still, both sets of receptors are within 1 dB between models.

Sound levels were predicted along the facades of the proposed development using the "building evaluation" feature of Cadna/A. This feature allows for noise levels to be predicted across the entire façade of a structure. Based on drawings, only facades that could contain bedrooms or living areas were considered in the analysis to be noise sensitive. Approximate ground level elevation contours were included in the modelling to include topographical features between the development and transportation sources.

Predicted worst-case façade sound levels are presented in **Table 6**. The predicted sound levels do not significantly change with building elevation. As both the QEW and North Shore Blvd. E. are the dominant sound sources, the largest change in predicted façade levels are due to separation distance and self screening effects. The highest predicted noise levels are on the southwest facades that face the QEW. The façade maps of the development showing predicted roadway impacts are shown in Figure 3 and Figure 4 for daytime and night-time sound levels, respectively.

Table 6: Summary of Predicted Roadway Noise Impacts - Façades

		Roadway Sound Levels		
Building Section	Façade ^[1]	L _{eq} Day (dBA)	L _{eq} Night (dBA)	
Cost Tower	Northwest	68	62	
East Tower	Northeast	61	55	

		Roadway	Sound Levels	
Building Section	Façade ^[1]	L _{eq} Day (dBA)	L _{eq} Night (dBA)	
•	Southeast	71	64	
•	Southwest	72	65	
	Northwest	71	64	
Mid Dies	Northeast	60	54	
Mid-Rise	Southeast	71	65	
•	Southwest	74	67	
	Northwest	72	66	
Dadium	Northeast	58	52	
Podium	Southeast	72	65	
•	Southwest	69	62	

Notes: [1] See Figure 3 and 4 for corresponding façade locations.

Sound levels were predicted at all noise-sensitive façades (residential units) throughout the development. The highest levels on each façade (excluding the northeast façade as it is screened form the QEW) was generally found to be above the 65 dBA daytime and 60 dBA the night-time limits.

2.5 Facade Requirements

Based on the roadway noise levels shown in **Table 6**, façade sound levels were predicted to exceed the above criteria at multiple locations throughout the development. Therefore, an assessment of glazing requirements is necessary for meeting the indoor sound level requirements outlined in **Table 1**.

Indoor sound levels and required facade Sound Transmission Classes (STCs) were estimated using the procedures outlined in National Research Council Building Practice Note BPN-56.

Calculated window STC ratings are the combined acoustical parameter determined from the individual roadway noise impacts. The worst-case daytime and night-time period impacts were considered, with the highest STC requirement calculated for each façade location.

Detailed floor plans were not available at the time of this assessment. For the analysis, generic bedrooms and living rooms have been considered. The following assumptions have been made regarding window glazing as a percentage of wall area for the mid-rise building:

- 70% for living rooms, which have the potential to be located at corners with 2 exposed sides.
- 50% for bedrooms, which will be located mid-span only.
- Non-glazing portions of the wall have an STC rating of 43.

The predicted maximum acoustical glazing requirements are provided in **Table 7** below.

Areas where acoustical requirements are not outlined, typical OBC windows and walls are expected to be sufficient. Any glazing configuration meeting the minimum structural and safety requirements of the Ontario Building Code, which generally produces a minimum STC for glazed elements of STC 29, is sufficient.

Façade Calculations are provided in **Appendix C**.

Table 7: **Summary of Façade STC Requirements**

Duilding Costion	Facada	STC Glazing R	equirements
Building Section	Façade	Living Room	Bedroom
	Northwest	OBC (26)	OBC (28)
East Tower	Southeast	OBC (29)	32
	Southwest	30	33
	Northwest	OBC (29)	32
Mid-Rise	Southeast	OBC (29)	32
·	Southwest	32	35
	Northwest	30	33
Podium	Southeast	30	33
-	Southwest	OBC (27)	OBC (29)

The northeast façade is the only façade that does not need upgraded glazing. All other facades (depending on the usage) would require upgrade glazing to meet the applicable indoor limits.

The combined glazing and frame assembly must be designed to ensure the overall sound isolation performance for the entire window unit meets the sound isolation requirements provided. It is recommended that window manufacturers test data be reviewed to confirm the acoustical performance is met.

As the design progresses, final acoustical requirements should be reviewed as part of the final design at the Building Permit stage.

2.6 **Outdoor Living Areas**

Outdoor living areas (OLA) of the proposed development, with the potential to be impacted by transportation noise, were assessed at six representative locations. Two of these are located at ground level, one in the north and one in the south courtyards. Although elevated amenity spaces are excluded from the Halton Region noise guidelines, The City of Burlington has requested to include the four representative elevated terrace locations. These being the 3rd floor terrace facing south (between the mid-rise and tower) and the three on the 7th floor (northeast roof, mid-rise and east tower). The OLA assessment locations and the predicted "unmitigated" noise impacts from the roadway are shown in Figure 5.

A 1.2m parapet wall has been included around the elevated terraces, the landscaped wall to the northwest (backing onto the townhouse lots) and the acoustic wall running along the western

property line have been included in the "unmitigated" results. The locations of these are included in **Figure 5**.

Table 8: Summary of Predicted Roadway Noise Impacts – OLA

Location	Road Impacts L _{eq} Day (dBA)	Applicable Guideline Limit	Meets Criteria?
South Courtward	6.1	L _{eq} Day (dBA) ^[1]	(Yes/No)
South Courtyard North Courtyard	64 59	55/60 55/60	No No/Yes
3 rd Floor Terrace	65	55/60	No
7 th Floor Terrace - Northeast	64	55/60	No
7 th Floor Terrace – Mid-rise	67	55/60	No
7 th Floor Terrace – East Tower	66	55/60	No

Note: [1] XX/YY – City of Burlington guidelines/ MECP NPC-300 Limits with the use of a **Type A** Warning Clause.

The projected sound levels at all outdoor amenity areas are predicted to be above the City of Burlington criteria. The sound level is above the MECP criteria at three of the four locations (North Courtyard meets with the inclusion of **Type A** warning clause).

Table 9 shows the predicted sound level at each of the OLAs with the inclusion of various barrier heights. **Figure 6** shows the locations of the modified barriers.

Table 9: Predicted OLA Sound Level as Height of Noise Wall Increases

Barrier Height (m)	South Courtyard (dBA)	North Courtyard (dBA)	3 rd Floor Terrace (dBA)	7 th Floor Terrace- Northeast (dBA)	7 th Floor Terrace – Mid-rise (dBA)	7 th Floor Terrace – East Tower (dBA)
1	64	59	n/a ^[1]	n/a ^[1]	n/a ^[1]	n/a ^[1]
2	62	59	59	62	64	63
3	59	56	56	60	61	59
3.5	-	-	55	-	59	-
4	56	55	54	57	58	56
5	55	-	-	56	57	54
6	-	-	-	55	56	-
7	-	-	-	-	56	-
8	-	-	-	-	56	-

Notes: "Unmitigated" parapet height is 1.2m.

2.6.1 MECP NPC-300 Criteria

The results presented in **Table 9** show that the following barrier heights are required for compliance with MECP NPC-300 criteria (60 dBA criteria), with the inclusion of **Type B** warning clauses:

South Courtyard – barrier height of less than 3 m;

- 3rd Floor Terrace a parapet wall of less than 2 m;
- 7th Floor Terrace northeast a parapet wall of approximately 3 m;
- 7th Floor Terrace mid-rise a parapet wall of less than 3.5m; and
- 7th Floor Terrace northeast a parapet wall of less than 3 m;

2.6.2 City of Burlington Criteria

The results presented in **Table 9** show that the following barrier heights are required for compliance with City of Burlington criteria (55 dBA criteria):

- South Courtyard barrier height of approximately 5 m;
- North Courtyard barrier height of approximately 4m;
- 3rd Floor Terrace a parapet wall of approximately 3.5 m;
- 7th Floor Terrace- northeast a parapet wall of approximately 6 m;
- 7th Floor Terrace mid-rise a parapet wall of greater than 8 m; and
- 7th Floor Terrace northeast a parapet wall of less than 5 m;

The results presented above show that barrier heights are possible in order to reduce the sound level down to the 55 dBA criteria for the City of Burlington. The practicality of installing such barriers (other than for sound reductions purposes) should be further reviewed for feasibility prior to recommendation or installation.

Another practical reduction method is to use localized acoustical screenings at select locations within the outdoor amenity areas. Given the maximum predicted sound levels within the OLA (64 dBA impacts), meeting the guideline requirements is anticipated to be possible.

2.7 Ventilation and Warning Clause Requirements

Based on the predicted sound levels, warning clauses are required to be included in agreements of purchase and sale or lease and rental agreements for the residential dwellings. See **Appendix C** for warning clause details.

2.7.1 Residential Units

The sound levels generated by the surrounding roadways will cause various warning clauses to be required on different units on the proposed development. The applicable portion of Table 3 has been included below for reference.

Assessment Location	Time Period	Energy Equivalent Sound Exposure Level - Leq (dBA) Road	Ventilation and Warning Claus Requirements
Plane of	Daytime	≤ 55	None
Window	(0700-2300h)	56 to 65 incl.	Forced Air Heating with provision to add air conditioning +

Assessment Location	Time Period	Energy Equivalent Sound Exposure Level - Leq (dBA) Road	Ventilation and Warning Claus Requirements
			Type C Warning Clause
			Central Air Conditioning +
		> 65	Type D Warning Clause
			Forced Air Heating with provision to add
	Night-time (2300-0700h)	51 to 60 incl.	air conditioning +
			Type C Warning Clause
		> 60	Central Air Conditioning +
		> 60	Type D Warning Clause

Forced air heating with the provision to add air conditioning (**Type C** warning clause) is required on the northeast residential rooms of the building. All other residential rooms that face the outdoors will require central air conditioning (**Type D** warning clause).

2.7.2 Outdoor Amenity Area

Based on the MECP NPC-300 document, **Type A and B** warning clauses and acoustical mitigation measure related to the increased sound levels for the outdoor amenity area is required for all suites. See **Appendix C** for all warning clause details

PART 2: IMPACTS OF THE DEVELOPMENT ON ITSELF

3.0 Noise Impacts Proposed Development Stationary Sources

The building mechanical systems have not been designed at this time. Details on size, location or operations have not been provided for sue within this study. In addition, details on the building's shipping and receiving activities were not provided and therefore not assessed.

Although no adverse impacts are expected, such equipment has the potential to result in noise impacts on residential spaces within the development. This equipment is required to meet MOECC Publication NPC-300 requirements at the facades of the noise sensitive spaces within the development. Therefore, the potential impacts should be assessed as part of the final building design. The criteria are expected to be met at all on-site receptors with the appropriate selection of mechanical equipment, by locating equipment to minimize noise impacts within the development, and by incorporating control measures (e.g., silencers) into the design.

It is recommended the mechanical systems be reviewed by an acoustical professional prior to final design.

PART 3: IMPACTS OF THE DEVELOPMENT ON THE SURROUNDING

4.0 **Proposed Development Mechanical Equipment**

At the time of this assessment, the proposed development's mechanical systems have not been sufficiently designed. On- and off-site noise impacts from all mechanical equipment should comply with the MECP Publication NPC-300 guideline limits.

Mechanical equipment is to be included with proposed development. Mechanical ventilation, cooling and emergency power systems may be required. Based on our experience, the type and size of the units and their probable locations are not anticipated to result in adverse noise impacts.

Regardless, potential impacts should be assessed as part of the final building design. The criteria can be met at all surrounding and on-site receptors by the appropriate selection of mechanical equipment, by locating equipment with sufficient setback from noise sensitive locations, and by incorporating control measures (e.g., silencers) into the design. This can be confirmed at either the site plan approval or building permit approval stages.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The potential for noise impacts on and from the proposed development have been assessed. Impacts of the environment on the development, the development on itself, and the development on the surrounding area have been considered. Based on the results of the study, the following conclusions have been reached:

5.1 Transportation Noise

- An assessment of transportation noise impacts from roadways has been completed.
- Based on transportation façade sound levels, the northeast façade is the only façade that does not need upgraded glazing. All other facades (depending on the usage) would require upgrade glazing to meet the applicable indoor limits, as listed in **Section 2.5**.
- Glazing requirements above are approximated, based on the generic room, façade and glazing dimensions. Once detailed floor plans and façade plans become available, the glazing requirements should be re-assessed and reviewed by an Acoustical Consultant.
- Forced air heating with the provision to add air conditioning (**Type C** warning clause) is required on the northeast residential rooms of the building. All other residential rooms that face the outdoors will require central air conditioning (**Type D** warning clause), as summarized in **Section 2.7**.
- Various recommendations are suggested depending if MECP NPC-300 or the City of Burlington criteria is used for assessing the predicted sound levels for the Outdoor Amenity Areas. Details on this can be found in **Section 2.6**.

5.2 Noise Impacts From Proposed Development on Itself

- The building mechanical systems have not been designed at this time. The potential impacts should be assessed as details are available or as part of the final building design. The criteria are expected to be met at all on-site receptors with the appropriate selection of mechanical equipment, by locating equipment to minimize noise impacts within the development, and by incorporating control measures (e.g., silencers) into the design.
- It is recommended the mechanical systems be reviewed by an acoustical professional prior to final design.

5.3 Noise Impacts From Proposed Development on the Surroundings

- The proposed development's mechanical systems have not been sufficiently designed. The criteria can be met at all surrounding and on-site receptors by the appropriate selection of mechanical equipment, by locating equipment with sufficient setback from noise sensitive locations, and by incorporating control measures (e.g., silencers) into the design.
- It is recommended that this be confirmed at either the site plan approval or building permit approval stages.

6.0 REFERENCES

International Organization for Standardization, ISO 9613-2: Acoustics – Attenuation of Sound During Propagation Outdoors Part 2: General Method of Calculation, Geneva, Switzerland, 1996.

National Research Council, (NRC, 1985). Building Practice Note: Controlling Sound Transmission into Buildings (BPN-56), ISSN 0701-5216.

Ontario Ministry of the Environment (MOE), 1989, Ontario Road Noise Analysis Method for Environment and Transportation (ORNAMENT).

Ontario Ministry of the Environment, Publication NPC-300: Environmental Noise Guideline, Stationary and Transportation Sources – Approval and Planning, 2013.

Ontario Ministry of the Environment (MOE), 1996, STAMSON v5.04: Road, Rail and Rapid Transit Noise Prediction Model.

Environmental Noise Feasibility Study – Proposed 1157-1171 Nor	th Shore	Blvd E
A	ugust 13	. 2019

This page intentionally left blank for 2-sided printing purposes

This page intentionally left blank for 2-sided printing purposes

Figure No. 1
Site Plan

18-0085 – 1157-1171 North Shore Development Burlington, Ontario

Scale: N/A
Date: 19/08/01

True
North

File No.:

Drawn B

File No.: 18-0085

Drawn By: AKH

Figure No. 2
Site and Surrounding Area

18-0085 - 1157-1171 North Shore Development Burlington, Ontario

Scale: 1: 6,000 Date: 19/08/01

Date: 19/08/01 File No.: 18-0085

Drawn By: AKH

Figure No. 3

Modelled Development Façade Sound Levels Roadway, Daytime

18-0085 – 1157-1171 North Shore Development Burlington, Ontario

North

Scale: 1: 750
Date: 19/08/01

File No.: 18-0085

Drawn By: AKH

Figure No. 4

Modelled Development Façade Sound Levels Roadway, Nighttime

18-0085 - 1157-1171 North Shore Development Burlington, Ontario

North

Scale: 1: 750
Date: 19/08/01

File No.: 18-0085

Drawn By: AKH

Figure No. 5 Outdoor Living Area - Road Impacts

18-0085 - 1157-1171 North Shore Development Burlington, Ontario

Scale: 1: 750 19/08/01 Date: File No.: 18-0085

AKH Drawn By: North

Figure No. 6
Potential Barrier Locations

18-0085 – 1157-1171 North Shore Development Burlington, Ontario

Scale: 1: 750
Date: 19/08/01

File No.: 18-0085

North Drawn By: AKH

This page intentionally left blank for 2-sided printing purposes

MontgomerySisam

Montgomery Sisam Architects Inc.

Planning: Bousfields Inc. Traffic : IBI Group Air / Wind / Noise : Novus Environmental Inc. Geotechnical Engineer Pinchin Ltd Environmental: Pinchin Ltd. Civil Engineering : Odan-Detech Group Inc.

Baker Turner Inc.

AMICA NORTH SHORE

1161 NORTH SHORE BOULEVARD, BURLINGTON

ISSUED FOR REZONING AUGUST 12th, 2019

MontgomerySisam

SHEET LIST			
Sheet Number	Sheet Name	_	
00	COVER	_	
01	GENERAL INFO	_	
10	GFA CALCULATION	_	
11	GFA CALCULATION	_	
12	GFA CALCULATION	_	
20	RENDERINGS	_	
00	SURVEY	_	
01	ROOF SITE PLAN	_	
01	FLOOR PLANS - P2, P1, LEVEL 1, MEZZANINE	_	
02	FLOOR PLANS - LEVELS 2-5	_	
03	FLOOR PLANS-LEVELS 6-9	_	
04	FLOOR PLANS - LEVELS 10-13		
05	FLOOR PLANS - LEVELS 14-17	_	
06	FLOOR PLAN - PENTHOUSE	_	
01	BUILDING ELEVATIONS-NORTH AND EAST	_	
02	BUILDING ELEVATION - SOUTH AND WEST	_	
01	SITE SECTIONS	_	
01	BUILDING MASSING		

STATISTICS
A0.01 1:1

1 18.00.17 ISSUED FOR REZONNO MS

B date: Nevision: by

revisions

All drawing and specifications are the specifications are the specifications are the specification are specification as the specification are s

AMICA NORTH SHORE

1161 - 1167 North Shore Boulevard

GENERAL INFO

cale: As indicated
issue by: KK

KH

b number: 17099

of date: 2019/08/09

plot date:

Montgomery Sisam Architects Inc.

MontgomerySisam

GFA CALCULATION LEGEND

"ZONING BY-LAW 2020, PART 16- DEFINITIONS

AMICA NORTH SHORE

GFA CALCULATION

Montgomery Sisam Architects Inc.

197 Spadina Avenue, Toronto, Ontario MST 2C8 r Tel 416.364.8079 Fax 416.364.7723

MontgomerySisam

GFA CALCULATION LEGEND

AREA INCLUDED IN GFA - INDOOR AMENITY*

AREA INCLUDED IN GFA - INDOOR AMENITY*

AREA EXCLUDED FROIN GFA AS PER BY-LAW 2002, PART 16DEPARTING OF FLOOR AREA (ROSS =**

OUTDOOR AMENITY

"ZONING BY-LAW 2020, PART 16- DEFINITIONS

AMICA NORTH SHORE

GFA CALCULATION

TABLE A

Level	Area
VEL 17	7,855 SF
	7,855 SF
VEL 16	7,855 SF
	7,855.8F
/EL 15	7,855 SF
	7,855 SF
/EL 14	7,855 SF
	7,855 SF
/EL 13	7,855 SF
	7,855 SF
EL 12	15,711 SF
	15,711 SF
EL 11	15,711 SF
	15,711 SF
EL 10	15,711 SF
	15,711 SF
EL 9	15.711 SE
	15,711 SF
EL 8	15.711 SE
	15,711 SF
EL7	20,441 SF
	20,441 SF
EL 6	46,978 SF
	46,978 SF
EL 5 - AL	46,996 SF
	46,995 SF
EL 4 - AL	47.028 SF
	47,028 SF
EL 3 - MC	47,004 SF
	47,004 SF
/EL2	52,477 SF
	52,477 SF
ZANNE	14,437 SF
	14,437 SF
EL1	48,646 SF
	48,646 SF
VEL P1	14,104 SF
	14,104 SF
ELP2	1.874 SE
	1,874 SF
and total	457.813.9F

TABLE B

INDOOR AMENITY AREA		
Level	Area	
LEVEL 17	457 SF	
	457 SF	
LEVEL 16	457 SF	
	457 SF	
LEVEL 15	457 SF	
	457 SF	
LEVEL 14	457 SF	
	457 SF	
LEVEL 13	457 SF 457 SF	
	457 SF	
LEVEL 12	932 SF 610 SF	
	932 SF	
LEVEL 11	932 SF 910 SF	
	932 SF	
LEVEL 10	932 SF 910 SF	
	932 br	
LEVEL 9	932 SF 932 SF	
LEVEL 8	932 SF 910 SF	
LEVEL 7	5,664 SF 5,664 SF	
LEVEL 6	4,688 SF 4.688 SF	
LEVEL 5 - AL	4,842 SF	
	4,842 SF	
LEVEL 4 - AL	4,847 SF	
	4,847 SF	
LEVEL 3 - MC	4,792 SF	
	4,792 SF	
LEVEL 2	6,558 SF	
	6,558 SF	
LEVEL 1	16,919 SF	

TABLE C

OUTDOOR AMENITY AREA		
Level	Area	
LEVEL 7	5,299 SF	
	5,299 SF	
LEVEL 6	1,938 SF	
	1,938 SF	
LEVEL 5 - AL	1,969 SF	
	1,969 SF	
LEVEL 4 - AL	1,938 SF	
	1,938 SF	
LEVEL 3 - MC	4,036 SF	
	4,026 SF	
LEVEL 1	11,929 SF	
	11,929 SF	
Grand total	27,098 SF	

Montgomery Sisam Architects Inc.

197 Spadina Avenue, Toronto, Ontario M5T 2C8 montgo Tel 416.384.8079 Fax 416.384.7723

MontgomerySisam

GFA CALCULATION LEGEND

AREA INCLUDED IN GFA - INDOOR AMENITY*

AREA ENCLUDED IN GFA - INDOOR AMENITY*

AREA ENCLUDED FROIN GFA AS PER BY LAW 2002, PART 15
DEFINITION OF FLOOR AREA GROSS :-
OUTDOOR AMENITY

"ZONING BY-LAW 2020, PART 16- DEFINITIONS

FLOOR AREA, GROSS

AMICA NORTH SHORE

GFA CALCULATION

scale:	As indicated	
drawn by:	KK	
reviewed by:	KH	
job number:	17099	
plot date:	2019/08/09	

SOUTH ELEVATION
1:1

4 FROM QEW 40.20 1:1

NORTH ELEVATION

1:1

SOUTH EAST CORNER

1:1

AMICA NORTH SHORE

RENDERINGS

Montgomery Sisam Architects Inc.

197 Spadina Avenue, Toronto, Ontario MST 2C8 mont Tel 416.364.8079 Fax 416.364.7723

MontgomerySisam

1 18.09.17 ISSUED FOR REZONING
date: revision:
revisions

AMICA NORTH SHORE

FLOOR PLAN - PENTHOUSE

A2.06

1 18.09.17 ISSUED FOR REZONING

date: revisions

AMICA NORTH SHORE

BUILDING ELEVATIONS- NORTH AND EAST

A3.01

1 18.09.17 ISSUED FOR REZONING
date: revision

AMICA NORTH SHORE

BUILDING ELEVATION - SOUTH AND WEST

scale:	As indicated
drawn by:	KK
reviewed by:	KH
job number:	17099
plot date:	2019/08/09

A3.02

1 SOUTH A3.02 1:500

Montgomery Sisam Architects Inc.

MontgomerySisam

SITE SECTION KEYNOTE LEGEND

NEAREST GRADE

2 NEAREST ROOF PEAK

1 18.09.17 ISSUED FOR REZONING MSA
date: revision: by:

All drawing and specifications are the property of the architect The contractor shall verify all dimensions an information on site and report any disortepancy! architect before proceeding.

AMICA NORTH SHORE

1161 - 1167 North Shore Boulevard Burlington, ON

SITE SECTIONS

e: As indicated on by: KK sweed by: KH rumber: 17099

plot date:

A4.01

AXONOMETRIC - NORTH EAST

1 18.09.17 ISSUED FOR REZONING # date: revisions

AMICA NORTH SHORE

BUILDING MASSING

A5.01

1 16:09.17 ISSUED FOR REZONNO MSA

date: revision: by:
revisions

All desirings and the

All drawing and specifications are the property of the architect. The contractor shall verify all dimensions and information on site and report any discrepancy to architect before proceeding.

AMICA NORTH SHORE

1161 - 1167 North Shore Boulevard Burlington, ON

SHADOW STUDY- MARCH 21, JUNE 21 AND DECEMBER 21

ng number:

Ministry of Transportation Highway Standards Branch

Traffic Office

Provincial Highways

Traffic Volumes

1988-2013

King's Highways / Secondary Highways / Tertiary Roads

Ministry Contact:

Traffic Office (905)-704-2960

Abstract:

This annual publication contains averaged traffic volume information and accident rate information for each of the sections of highway under MTO jurisdiction.

Key Words:

Annual Average Daily Traffic volume (AADT), Summer Average Daily Traffic volume (SADT), Summer Average Weekday Traffic volume (SAWDT), Winter Average Daily Traffic volume (WADT), Accident Rate (AR)

CR	Highway	Location Description	Dist.	Year	Pattern	AADT	SADT	SAWDT	WADT	AR
QEW FAIRVIEW ST IC-99 Table 100			(KM)		Type					
2002 CR 122,100 136,100 137,200 107,600 2003 CR 124,000 125,000 445,100 105,400 0										
QEW FAIRVIEW ST IC-99 1.0 1.										
2004 CR 128,200 156,200 150,000 108,500 02005 CR 131,800 159,900 153,700 111,000 02006 CR 335,400 164,200 157,500 114,800 02006 CR 139,900 168,200 174,000 171,200 120,200 02006 CR 142,600 176,000 169,800 123,800 02006 CR 142,600 176,000 169,800 123,800 02011 CR 142,600 179,500 173,300 126,700 02011 CR 142,600 179,500 173,300 126,700 02011 CR 142,600 174,000 178,400 123,800 02011 CR 142,600 168,000 178,400 123,800 02011 CR 142,600 178,400 178,400 123,800 02011 CR 142,600 168,000 178,400 123,800 02011 CR 142,600 168,000 178,400 123,800 02011 CR 142,600 168,000 178,400 123,800 02011 CR 142,600 178,400										
2005 CR 338,400 159,900 153,700 111,000 0 2007 CR 335,400 164,200 157,500 114,300 0 2007 CR 139,000 168,200 168,200 171,100 120,000 CR 142,600 172,600 171,200 120,200 CR 142,600 172,600 171,200 120,200 CR 142,600 172,500 173,300 126,700 CR 142,600 173,500 173,300 126,700 CR 142,600 173,500 173,300 126,700 CR 142,600 173,500 173,300 126,700 CR 142,600 174,000 178,400 123,600 CR 142,600 174,000 178,400 123,600 CR 142,600 174,000 178,400 123,600 CR 144,000 178,600 178,400 123,600 CR 144,000 178,600 124,400 CR 144,000 178,600 178,400 CR 144,000 178,600 178,400 CR 144,000 178,600 178,400 CR 144,000 178,400 CR 144,000 CR										
2006 CR 135,400 164,200 157,500 114,300 0										
2007 CR 139,000 188,200 168,200 117,100 0 2008 CR 142,600 172,600 171,200 120,200 0 2010 CR 142,600 176,000 169,600 123,600 0 2010 CR 142,600 176,000 169,600 126,700 0 2011 CR 142,600 176,000 169,900 126,700 0 2011 CR 144,600 172,800 169,900 122,400 N 2012 CR 144,000 172,800 169,900 122,400 N 2013 CR 145,000 174,000 178,400 123,300 N 2013 CR 145,000 174,000 178,400 123,300 N 2013 CR 145,000 174,000 178,400 123,300 N 1990 IC 76,600 88,000 86,500 68,100 68,500 68,100 0 1990 IC 80,500 91,900 71,600 0 1990 IC 80,500 91,900 73,700 1 1991 IC 82,900 33,600 91,900 73,700 1 1992 IC 83,500 94,300 39,500 74,300 0 1990 IC 83,500 91,900 76,500 0 1994 IC 95,900 106,900 108,400 85,600 1996 IC 95,900 106,900 108,400 85,600 1996 IC 99,700 111,200 112,700 88,300 1996 IC 99,700 111,200 112,700 88,300 1999 IC 111,300 124,100 125,100 98,600 1999 IC 111,300 124,100 125,100 98,600 100,000										
2008 CR 142,600 172,600 171,200 120,200 0 2000 CR 142,600 176,000 169,600 123,500 0 2010 CR 142,600 176,500 173,300 126,700 0 2011 CR 142,600 174,000 178,300 126,700 0 2011 CR 144,000 174,000 178,400 123,300 N 2013 CR 145,000 174,										
2009 CR 142,600 176,000 163,600 123,600 0 2011 CR 142,600 174,000 173,300 126,700 0 2011 CR 142,600 174,000 178,400 126,900 N 2012 CR 144,000 172,800 168,300 126,900 N 2012 CR 144,000 172,800 168,300 126,900 N 2012 CR 144,000 172,800 178,400 123,300 N 2013 CR 145,000 174,000 178,400 123,300 N 2014 N 20										
2010 CR 142,600 179,500 173,300 126,700 0 2011 CR 142,600 166,800 168,300 126,900 N 2012 CR 144,000 172,300 129,000 N 2013 CR 145,000 174,000 174,400 123,300 N 2013 CR 145,000 174,000 178,400 123,300 N 2013 CR 145,000 174,000 178,400 123,300 N 1899 IC 68,000 88,000 86,500 68,100 0 1990 IC 80,500 91,700 90,100 71,600 N 1991 IC 82,900 93,600 91,900 73,700 1 1991 IC 82,900 93,600 91,900 73,700 1 1992 IC 83,500 94,300 93,500 74,300 0 1993 IC 84,100 93,300 92,500 76,500 N 1994 IC 92,100 102,700 103,500 81,600 0 1994 IC 92,100 102,700 103,500 81,600 0 1996 IC 99,700 111,200 112,700 83,300 1996 IC 99,700 111,200 112,700 98,600 0 1997 IC 103,600 115,500 117,100 91,200 0 1999 IC 111,300 124,100 125,100 98,600 0 2000 IC 118,900 133,200 133,200 133,200 141,400 102,000 0 2001 IC 118,900 133,200 133,200 141,400 102,000 0 2004 IC 130,400 145,300 146,700 115,500 115,500 102,000 0 2006 IC 134,300 145,300 146,700 112,300 2006 IC 134,300 145,300 146,700 122,300 2006 IC 141,600 161,500 156,300 128,600 2006 IC 141,600 161,500 156,300 128,600 2009 IC 141,600 161,500 156,300 128,600 2000 IC 141,600 161,500 156,300 128,600 2000 IC 141,600 161,500 156,300 132,600 2000 IC 141,600 161,500 156,300 128,600 2000 IC 133,400 161,500 156,300 132,600 2000 IC 133,400 161,500 156,300 132,600 2000 IC 133,400 161,500 156,300 132,600 2000 IC 133,400 161,500 156,300 156,300 156,300 156,300 156,300 156,300 156,300 156,300 156,300 156,300 156,30										
2011 CR 142,600 168,800 126,900 N. 2013 CR 144,000 172,800 169,900 122,400 N. 2013 CR 145,000 177,000 178,400 123,300 N. 2013 CR 145,000 178,000 78,800 76,800 59,800 O. 2015 CR 25,000 08,500 08,500 08,100 O. 2016 CR 25,000 08,500 08,100 O. 2017 CR 25,000 08,000 08,100 O. 2018 CR 25,000 09,100 73,700 O. 2019 CR 25,000 02,700 03,500 74,300 O. 2019 CR 25,000 02,700 03,500 03,500 03,500 03,500 O. 2010 CR 25,000 03,500 03,500 03,500 03,500 O. 2010 CR 25,000 03,500 03,500 03,500 03,500 03,500 O. 2010 CR 25,000 03,500 03,500 03,500 03,500 03,500 O. 2010 CR 25,000 03,500 03,500 03,500 03,500 03,500 O. 2010 CR 25,000 03,500 03,500 03,500 03,500 03,500 O. 2010 CR 25,000 25,000 03,500										
2012 CR 144,000 172,800 169,900 122,400 N.										
QEW FAIRVIEW ST IC-99										
QEW FAIRVIEW ST IC-99 1.0 1988 IC 68,000 76,800 59,800 0 1 1989 IC 76,600 88,000 66,500 68,100 0 1 1990 IC 80,500 91,700 90,100 71,600 0 1 1991 IC 82,900 93,600 91,900 73,700 1 1 1992 IC 83,500 94,300 93,500 74,300 0 1 1994 IC 92,100 102,700 103,500 81,600 0 1 1996 IC 99,700 116,900 108,400 85,000 0 1 1997 IC 103,600 112,700 88,300 0 1 1997 IC 103,600 115,500 117,100 91,200 0 1 1998 IC 107,400 118,800 124,100 125,100 98,600 0 2 1001 IC 118,900 133,200 133,200 104,600 0 <										
1989 IC										
1990 IC 80,500 91,700 90,100 71,600 0 1991 IC 82,900 93,600 91,900 73,700 1 1992 IC 83,500 94,300 93,500 74,300 0 1993 IC 84,100 93,300 92,500 76,500 0 1994 IC 92,100 102,700 103,500 81,600 0 1995 IC 95,900 106,900 108,400 85,000 0 1996 IC 99,700 111,200 112,700 88,300 0 1997 IC 103,600 115,500 117,100 91,200 0 1998 IC 107,400 119,800 120,700 95,200 0 1999 IC 111,300 124,100 125,100 98,600 0 2000 IC 115,100 128,300 129,400 102,000 0 2001 IC 118,900 133,200 133,200 104,600 0 2002 IC 122,800 136,900 138,000 108,200 0 2003 IC 126,600 140,500 141,800 111,400 0 2004 IC 130,400 145,300 146,700 115,500 0 2005 IC 134,300 149,300 150,800 118,400 0 2006 IC 138,100 153,400 156,800 125,400 0 2007 IC 144,900 157,600 162,500 125,400 0 2008 IC 145,800 165,800 167,300 128,600 0 2009 IC 144,800 165,800 167,300 128,600 0 2009 IC 144,800 165,800 167,300 128,600 0 2009 IC 144,800 165,800 167,300 132,600 0 2009 IC 144,800 164,800 174,200 136,000 0	QEW	FAIRVIEW ST IC-99	1.0							
1991 IC										
1992 IC										
1993 IC 84,100 93,300 92,500 76,500 0 1994 IC 92,100 102,700 103,500 81,600 0 1995 IC 95,900 106,900 108,400 88,300 0 1996 IC 99,700 111,200 117,100 91,200 0 1998 IC 103,600 115,500 117,100 91,200 0 1998 IC 107,400 119,800 120,700 95,200 0 1999 IC 111,300 124,100 125,100 98,600 0 2000 IC 115,100 128,300 129,400 102,000 0 2001 IC 118,900 138,000 108,200 0 2002 IC 122,800 36,900 338,000 108,200 0 2003 IC 126,600 140,500 141,800 111,400 0 2004 IC 130,400 145,300 146,700 115,500 0 2005 IC 134,300 149,300 150,800 118,400 0 2006 IC 138,100 153,400 156,300 128,600 0 2007 IC 141,800 157,300 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,800 165,800 167,300 132,600 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800 160,800										
1994 IC 92,100 102,700 103,500 81,600 0 1995 IC 95,900 106,900 108,400 85,000 0 1996 IC 99,700 111,200 112,700 88,300 0 1997 IC 103,600 115,500 117,100 91,200 0 1998 IC 107,400 119,800 120,700 95,200 0 1999 IC 111,300 124,100 125,100 98,600 0 2000 IC 115,100 128,300 129,400 102,000 0 2001 IC 118,900 133,200 104,600 0 2001 IC 118,900 133,200 104,600 0 2002 IC 122,800 136,900 138,000 108,200 0 2003 IC 126,600 140,500 141,800 111,400 0 2004 IC 130,400 145,300 146,700 115,500 0 2006 IC 134,300 149,300 150,800 118,400 0 2006 IC 134,100 153,400 154,900 122,300 0 2006 IC 141,900 157,600 162,500 122,400 0 2008 IC 145,800 161,500 126,800 0 2009 IC 149,600 165,800 167,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2009 IC 149,600 165,800 171,200 136,000 0 2010 IC 153,400 169,800 171,200 136,000 171,200 136,000 171,200 136,000 171,200 136,000 171,200 136,000 171,200 136,000 171,200 136,000 171,200 136,000 171,200 136,000 171,200 136,000 171										
1995 IC 95,900 106,900 108,400 85,000 0 1996 IC 99,700 111,200 112,700 88,300 0 1997 IC 103,600 115,500 117,100 91,200 0 1998 IC 107,400 119,800 120,700 95,200 0 1999 IC 111,300 124,100 125,100 98,600 0 2000 IC 115,100 128,300 129,400 102,000 0 2001 IC 118,900 133,200 133,200 104,600 0 2002 IC 122,800 136,900 138,000 108,200 0 2004 IC 130,400 141,800 141,400 1										
1996 IC 99,700 111,200 112,700 88,300 0 1997 IC 103,600 115,500 117,100 91,200 0 1998 IC 107,400 119,800 120,700 95,200 0 1999 IC 111,300 124,100 125,100 98,600 0 2000 IC 115,100 128,300 129,400 102,000 0 2001 IC 118,900 133,200 133,200 104,600 0 2002 IC 122,800 136,900 138,000 108,200 0 2003 IC 126,600 140,500 141,800 111,400 0 2004 IC 130,400 145,300 146,700 115,500 0 2005 IC 134,300 149,300 150,800 118,400 0 2006 IC 138,100 153,400 154,900 122,300 0 2006 IC 141,900 157,600 162,500 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 1										
1997 IC 103,600 115,500 117,100 91,200 0 1998 IC 107,400 119,800 120,700 95,200 0 1999 IC 111,300 124,100 125,100 98,600 0 10 115,100 128,300 129,400 102,000 0 10 118,900 133,200 133,200 104,600 0 10 128,300 138,000 108,200 0 10 128,300 138,000 108,200 0 10 128,300 104,600 0 10 128,300 104,600 0 10 128,300 104,600 0 10 128,300 108,200 0 10 128,300 108,200 0 10 128,300 108,200 0 10 128,300 10 108,200 0 10 10 10 10 10 10										
1998 IC 107,400 119,800 120,700 95,200 0 1999 IC 111,300 124,100 125,100 98,600 0 0 0 0 0 0 0 0 0										
1999 IC 111,300 124,100 125,100 98,600 0 2000 IC 115,100 128,300 129,400 102,000 0 2001 IC 118,900 133,200 133,200 104,600 0 2002 IC 122,800 136,900 138,000 108,200 0 2003 IC 126,600 140,500 141,800 111,400 0 2004 IC 130,400 145,300 146,700 115,500 0 2005 IC 134,300 149,300 150,800 118,400 0 2006 IC 138,100 153,400 154,900 122,300 0 2007 IC 141,900 157,600 162,500 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2000 IC 115,100 128,300 129,400 102,000 0 2001 IC 118,900 133,200 133,200 104,600 0 2002 IC 122,800 136,900 138,000 108,200 0 2003 IC 126,600 140,500 141,800 111,400 0 2004 IC 130,400 145,300 146,700 115,500 0 2005 IC 134,300 149,300 150,800 118,400 0 2006 IC 138,100 153,400 154,900 122,300 0 2007 IC 141,900 157,600 162,500 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2001 IC 118,900 133,200 104,600 0 2002 IC 122,800 136,900 138,000 108,200 0 2003 IC 126,600 140,500 141,800 111,400 0 2004 IC 130,400 145,300 146,700 115,500 0 2005 IC 134,300 149,300 150,800 118,400 0 2006 IC 138,100 153,400 154,900 122,300 0 2007 IC 141,900 157,600 162,500 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2002 IC 122,800 136,900 138,000 108,200 0 2003 IC 126,600 140,500 141,800 111,400 0 2004 IC 130,400 145,300 146,700 115,500 0 2005 IC 134,300 149,300 150,800 118,400 0 2006 IC 138,100 153,400 154,900 122,300 0 2007 IC 141,900 157,600 162,500 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2003 IC 126,600 140,500 141,800 111,400 0 2004 IC 130,400 145,300 146,700 115,500 0 2005 IC 134,300 149,300 150,800 118,400 0 2006 IC 138,100 153,400 154,900 122,300 0 2007 IC 141,900 157,600 162,500 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2004 IC 130,400 145,300 146,700 115,500 0 12005 IC 134,300 149,300 150,800 118,400 0 0 0 0 0 0 0 0 0										
2005 IC 134,300 149,300 150,800 118,400 0 2006 IC 138,100 153,400 154,900 122,300 0 2007 IC 141,900 157,600 162,500 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2006 IC 138,100 153,400 154,900 122,300 0 2007 IC 141,900 157,600 162,500 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2007 IC 141,900 157,600 162,500 125,400 0 2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2008 IC 145,800 161,500 156,300 128,600 0 2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2009 IC 149,600 165,800 167,300 132,600 0 2010 IC 153,400 169,800 171,200 136,000 0										
2010 IC 153,400 169,800 171,200 136,000 0										
2011 IC 157,300 173,000 179,300 141,500 N				2010	IC					

Ministry of Transportation

Highway Standards Branch

Traffic Office

Provincial Highways

Traffic Volumes

2016

King's Highways / Secondary Highways / Tertiary Roads

Ministry Contact:

Traffic Office (905)-704-2960

Abstract:

This annual publication contains averaged traffic volume information for each of the sections of highway under MTO jurisdiction for the year 2016 only.

Key Words:

Annual Average Daily Traffic volume (AADT

			Dist.	
Highway	Location Description From	Location Description To	(KM)	2016 AADT
QEW	FORT ERIE-GODERICH ST-PEACE BRIDGE PLAZA	CENTRAL AV IC	0.2	14,600
QEW	CENTRAL AV IC	CONCESSION RD IC-1	0.9	18,700
QEW	CONCESSION RD IC-1	THOMPSON RD IC-2	1.0	15,500
QEW	THOMPSON RD IC-2	GILMORE RD IC-5	2.4	17,700
QEW	GILMORE RD IC-5	BOWEN RD IC-7	2.0	24,200
QEW	BOWEN RD IC-7	NETHERBY RD IC-12 NIAGARA FALLS LTS	5.5	25,700
QEW	NETHERBY RD IC-12 NIAGARA FALLS LTS	SODOM RD IC-16	3.2	22,000
QEW	SODOM RD IC-16	LYONS CREEK RD IC-21	6.6	29,000
QEW	LYONS CREEK RD IC-21	MCLEOD RD IC-27	4.4	36,700
QEW	MCLEOD RD IC-27	HWY 420 IC-30	2.9	45,100
QEW	HWY 420 IC-30	THOROLD STONE RD IC-32	2.0	70,400
QEW	THOROLD STONE RD IC-32	MOUNTAIN RD IC-34	2.5	67,400
QEW	MOUNTAIN RD IC-34	HWY 405(WBL)IC-37	2.4	71,000
QEW	HWY 405(WBL)IC-37	GLENDALE AV IC-38	1.3	88,100
QEW	GLENDALE AV IC-38	NIAGARA ST SERVICE RDS	4.8	90,500
QEW	NIAGARA ST SERVICE RDS	NIAGARA ST IC-44	1.2	78,600
QEW	NIAGARA ST IC-44	LAKE ST IC-46	1.6	81,900
QEW	LAKE ST IC-46	ONTARIO ST IC-47	1.3	117,000
QEW	ONTARIO ST IC-47	MARTINDALE RD IC-48	0.7	97,400
QEW	MARTINDALE RD IC-48	HWY 406 IC-49	0.7	74,400
QEW	HWY 406 IC-49	SEVENTH ST IC-51	1.9	97,100
QEW	SEVENTH ST IC-51	JORDAN RD IC-55	4.3	98,100
QEW	JORDAN RD IC-55	VICTORIA AV IC-57	2.8	104,300
QEW	VICTORIA AV IC-57	ONTARIO ST IC-64	6.7	105,100
QEW	ONTARIO ST IC-64	BARTLETT AV IC-68	3.8	99,800
QEW	BARTLETT AV IC-68	MAPLE AV IC-71	2.5	99,300
QEW	MAPLE AV IC-71	CASABLANCA BV IC-74	3.6	107,100
QEW	CASABLANCA BV IC-74	FIFTY RD IC-78	3.5	112,300
QEW	FIFTY RD IC-78	FRUITLAND RD IC-83	5.1	120,300
QEW	FRUITLAND RD IC-83	HAMILTON 20 IC 88-CENTENNIAL PKWY	5.2	119,000
QEW	HAMILTON 20 IC 88-CENTENNIAL PKWY	BURLINGTON ST IC-89	1.6	130,000
QEW	BURLINGTON ST IC-89	EASTPORT RD IC-93 (7189)	4.0	135,000
QEW	EASTPORT RD IC-93 (7189)	HAMILTON HARBOUR ENTRANCE	0.9	149,400
	HAMILTON HARBOUR ENTRANCE	NORTH SHORE BLVD IC 97	2.3	271,300
	NORTH SHORE BLVD IC 97	FAIRVIEW ST IC-99	2.3	161,300
	FAIRVIEW ST IC-99	HWY 403/407 IC-100	1.0	172,900
	HWY 403/407 IC-100	BRANT ST IC 101	0.8	164,300
	BRANT ST IC 101	GUELPH LINE IC-102	1.8	162,100
	GUELPH LINE IC-102	WALKERS LINE IC-105	2.0	195,000
	WALKERS LINE IC-105	APPLEBY LINE IC-107	2.0	190,000
	APPLEBY LINE IC-107	BURLOAK DR IC-109	1.9	195,000
	BURLOAK DR IC-109	BRONTE SERVICE RD IC-110	1.5	204,000
	BRONTE SERVICE RD IC-110	REG. RD 25(N) BRONTE RD(S) IC-111	0.4	202,200
	REG. RD 25(N) BRONTE RD(S) IC-111	THIRD LINE RD IC 113	2.0	191,300

North Shore Blvd @ QEW East Ramp

Annual Average Daily Traffic Diagram

Total Factor = Monthly Factor(1.02) x Daily Factor(1.02) x 24 Hour Factor(1.85) = 1.924740

Municipality: Burlington

Site #: 0000201394

North Shore Blvd & QEW E Ramp Intersection:

TFR File #:

North Leg Total: 3124

North Entering: 0

North Peds:

Peds Cross:

Count date: 11-Apr-2016 Weather conditions:

Overcast/Wet

Person(s) who counted:

Rick W

QEW On Ramp

** Signalized Intersection **

Cyclists 0 0 0 0 Trucks 0 Cars 0 O 0 0

0

Cyclists 0 Trucks 112 Cars 3012 Totals 3124

Major Road: North Shore Blvd runs W/E

East Leg Total: 24696 East Entering: 12495 East Peds: 2 \mathbb{X} Peds Cross:

Cyclists Trucks Cars Totals 304 10721 11031

Cars

11829 366

Cyclists Trucks Cars Totals 0 0 0 0 189 5245 5439 897 928 0 31 6142

North Shore Blvd

Totals 0

 \mathbb{X} Peds Cross: West Peds: 2 West Entering: 6367 West Leg Total: 17398

Cars 897 Trucks 31 Cyclists 0 Totals 928

QEW On/Off Ramp

Cars 1619 6585 8203 217 Trucks 40 0 177 Cyclists 0 0 Totals 1659 6762

Peds Cross: \bowtie South Peds: 13 South Entering: 8421 South Leg Total: 9348

Trucks Cyclists Totals

12201

Comments

ORNAMENT - Sound Power Emissions & Source Heights

Ontario Road Noise Analysis Method for Environment and Transportation

Road Segment ID	Roadway Name	Link Description	Speed (kph)	Period (h)	Total Traffic Volumes 2031	Auto %	Med %	Hvy %	Auto	Med	Heavy	Road Gradient (%)	Cadna/A Ground Absorpti on G	PWL (dBA)	Source Height, s (m)
QEW_NB	QEW NB	Daytime	100	16	85529	88.3%	2.9%	8.8%	75522	2502	7505	0	0.00	98.2	1.7
QEW_SB	QEW SB	Daytime	100	16	85529	88.3%	2.9%	8.8%	75522	2502	7505	0	0.00	98.2	1.7
NS_EB_QEW_NBR	North Shore EB to QEW NB Ramp	Daytime	40	16	984	96.7%	1.8%	1.5%	951	18	15	0	0.00	66.4	1.1
NS_WB_QEW_NBR	North Shore WB to QEW NB Ramp	Daytime	50	16	3313	96.4%	1.9%	1.7%	3194	64	55	0	0.00	73.9	1.1
QEW_NBR_NS	QEW NB Offramp to North Shore	Daytime	60	16	8931	97.4%	1.4%	1.2%	8701	123	107	0	0.00	79.3	1.0
NS_EL_EB	North Shore East of Ramp EB	Daytime	60	16	12934	97.0%	1.6%	1.4%	12546	208	180	0	0.00	81.2	1.1
NS_EL_WB	North Shore East of Ramp WB	Daytime	60	16	13245	97.0%	1.6%	1.4%	12847	213	186	0	0.00	81.3	1.1
NS_WL_EB	North Shore West of Ramp EB	Daytime	60	16	6747	96.5%	1.9%	1.6%	6514	125	108	0	0.00	78.7	1.1
NS_WL_WB	North Shore West of Ramp WB	Daytime	60	16	11692	97.2%	1.5%	1.3%	11370	172	151	0	0.00	80.6	1.1
QEW_NB	QEW NB	Nighttime	100	8	9503	88.3%	2.9%	8.8%	8391	278	834	0	0.00	91.6	1.7
QEW_SB	QEW SB	Nighttime	100	8	9503	88.3%	2.9%	8.8%	8391	278	834	0	0.00	91.6	1.7
NS_EB_QEW_NBR	North Shore EB to QEW NB Ramp	Nighttime	40	8	109	96.7%	1.8%	1.5%	106	2	2	0	0.00	59.8	1.1
NS_WB_QEW_NBR	North Shore WB to QEW NB Ramp	Nighttime	50	8	368	96.4%	1.9%	1.7%	355	7	6	0	0.00	67.4	1.1
QEW_NBR_NS	QEW NB Offramp to North Shore	Nighttime	60	8	992	97.4%	1.4%	1.2%	967	14	12	0	0.00	72.8	1.0
NS_EL_EB	North Shore East of Ramp EB	Nighttime	60	8	1437	97.0%	1.6%	1.4%	1394	23	20	0	0.00	74.7	1.1
NS_EL_WB	North Shore East of Ramp WB	Nighttime	60	8	1472	97.0%	1.6%	1.4%	1427	24	21	0	0.00	74.8	1.1
NS_WL_EB	North Shore West of Ramp EB	Nighttime	60	8	750	96.5%	1.9%	1.6%	724	14	12	0	0.00	72.1	1.1
NS_WL_WB	North Shore West of Ramp WB	Nighttime	60	8	1299	97.2%	1.5%	1.3%	1263	19	17	0	0.00	74.1	1.1

		Sound L			Room /	oom / Façade Inputs				Source In	puts	Veneer	- Component 1	Glazing - Component 2	
Receptor ID	Receptor Description	Façade Sound Level:	Free - field Corr:	Req'd Indoor Sound Level:	Glazing as % of Wall Area	Exp Wall Ht	Exp Wall Length	Room Depth	Room Absorption:	Incident Sound Angle:	Spectrum type:	Veneer STC	Component Category:	Component Category:	Req'd Glazing STC
DAYTIME		(dBA)	(dBA)	(dBA)		(m)	(m)	(m)		(deg)		(STC)			(STC)
East Tower (Northwest Façade)	East Tower (Northwest Façade) - Living Room	68	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic,	43	D. sealed thick window, or	C. sealed thin window, or	26
East Tower (Northwest Façade)	East Tower (Northwest Façade) - Bedroom	68	3	45	50%	2.8	3.0	3.0	Intermediate	0 - 90	distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	28
East Tower (Southeast Façade)	East Tower (Southeast Façade) - Living Room	71	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	29
			3							0 - 90	distant aircraft D. mixed road traffic,		exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	32
East Tower (Southeast Façade)	East Tower (Southeast Façade) - Bedroom	71		45	50%	2.8	3.0	3.0	Intermediate		distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	
East Tower (Southwest Façade)	East Tower (Southwest Façade) - Living Room	72	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	30
East Tower (Southwest Façade)	East Tower (Southwest Façade) - Bedroom	72	3	45	50%	2.8	3.0	3.0	Intermediate	0 - 90	distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	33
Mid-rise Tower (Northwest Façade)	South Tower (Northwest Façade) - Living Room	71	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	29
Mid-rise Tower (Northwest Façade)	South Tower (Northwest Façade) - Bedroom	71	3	45	50%	2.8	3.0	3.0	Intermediate	0 - 90	distant aircraft	43	exterior wall, or roof/ceiling	openable thick window C. sealed thin window, or	32
Mid-rise Tower (Southeast Façade)	South Tower (Southeast Façade) - Living Room	71	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	openable thick window	29
Mid-rise Tower (Southeast Façade)	South Tower (Southeast Façade) - Bedroom	71	3	45	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	32
Mid-rise Tower (Southwest Façade)	South Tower (Southwest Façade) - Living Room	74	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	32
Mid-rise Tower (Southwest Façade)	South Tower (Southwest Façade) - Bedroom	74	3	45	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	35
Podium (Northwest façade)	Podium (Northwest Façade) - Living Room	72	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	30
Podium (Northwest façade)	Podium (Northwest Façade) - Bedroom	72	3	45	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	33
Podium (Southeast façade)	Podium (Southeast Façade) - Living Room	72	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	30
Podium (Southeast façade)	Podium (Southeast Façade) - Bedroom	72	3	45	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	33
Podium (Southwest façade)	Podium (Southwest Façade) - Living Room	69	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	54	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	27
Podium (Southwest façade)	Podium (Southwest Façade) - Bedroom	69	3	45	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	54	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	29
NIGHT-TIME			•					•							
East Tower (Northwest Façade)	East Tower (Northwest Façade) - Living Room	62	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	20
East Tower (Northwest Façade)	East Tower (Northwest Façade) - Bedroom	62	3	40	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic, distant aircraft	43	D. sealed thick window, or exterior wall, or roof/ceiling	C. sealed thin window, or openable thick window	27
East Tower (Southeast Façade)	East Tower (Southeast Façade) - Living Room	64	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic,	43	D. sealed thick window, or	C. sealed thin window, or	22
East Tower (Southeast Façade)	East Tower (Southeast Façade) - Bedroom	64	3	40	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic,	43	D. sealed thick window, or	C. sealed thin window, or	29
East Tower (Southwest Façade)	East Tower (Southwest Façade) - Living Room	65	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic,	43	D. sealed thick window, or	C. sealed thin window, or	23
East Tower (Southwest Façade)	East Tower (Southwest Façade) - Bedroom	65	3	40	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic,	43	D. sealed thick window, or	C. sealed thin window, or	30
Mid-rise Tower (Northwest Façade)	South Tower (Northwest Façade) - Living Room	64	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	22
Mid-rise Tower (Northwest Façade)	South Tower (Northwest Façade) - Bedroom	64	3	40	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic,	43	D. sealed thick window, or	openable thick window C. sealed thin window, or	29
Mid-rise Tower (Southeast Façade)	South Tower (Southeast Façade) - Living Room	65	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	23
Mid-rise Tower (Southeast Façade)	South Tower (Southeast Façade) - Bedroom	65	3	40	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	30
Mid-rise Tower (Southwest Façade)	South Tower (Southwest Façade) - Living Room	67	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	25
Mid-rise Tower (Southwest Façade)	South Tower (Southwest Facade) - Bedroom	67	3	40	50%	2.8	3.0	3.0	Intermediate	0 - 90	D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	33
Podium (Northwest façade)	Podium (Northwest Façade) - Living Room	66	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	24
		-	3		-					0 - 90	distant aircraft D. mixed road traffic,		exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	32
Podium (Northwest façade)	Podium (Northwest Façade) - Bedroom	66	_	40	50%	2.8	3.0	3.0	Intermediate		distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	
Podium (Southeast façade)	Podium (Southeast Façade) - Living Room	65	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	23
Podium (Southeast façade)	Podium (Southeast Façade) - Bedroom	65	3	40	50%	2.8	3.0	3.0	Intermediate	0 - 90	distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	30
Podium (Southwest façade)	Podium (Southwest Façade) - Living Room	62	3	45	70%	2.8	3.0	6.0	Intermediate	0 - 90	distant aircraft D. mixed road traffic,	43	exterior wall, or roof/ceiling D. sealed thick window, or	openable thick window C. sealed thin window, or	20
Podium (Southwest façade)	Podium (Southwest Façade) - Bedroom	62	3	40	50%	2.8	3.0	3.0	Intermediate	0 - 90	distant aircraft	43	exterior wall, or roof/ceiling	openable thick window	27

Figure No. **B.1**

Stamson/CandaA Validation Files

18-0085 – 1157-1171 North Shore Development Burlington, Ontario

Scale: 1: 750
Date: 19/08/01

File No.: 18-0085

North Drawn By: AKH

Warning Clauses

The following warning clause must be included in agreements registered on Title and included in all agreements of purchase and sale or lease and all rental agreements for the development:

Transportation Noise Sources

MECP Type A: "Purchasers/tenants are advised that sound levels due to increasing road and rail traffic may occasionally interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks."

MECP Type B: "Purchasers/tenants are advised that despite the inclusion of noise control features in the development and within the building units, sound levels due to increasing road traffic may on occasions interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks."

MECP Type C: "This dwelling unit has been designed with the provision for adding central air conditioning at the occupant's discretion. Installation of central air conditioning by the occupant in low and medium density developments will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks."

MECP Type D: "This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks."